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is singular in that g(x , r) ~~~~~~~~ uniformly as r ~~~~~~ Existence

of classical and generalized solutions is established and an

associated nonlinear elgenvalue problem is treated. A de-
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ON A DIRICHLET PROBLEM WITH A SINGULAR NONLINEARIT Y

M. G. Crandall , P. H. Rabinowitz and L. Tartar

: This paper concerns nonlinear elliptic bound ary value problems of

the form

1Lu = _~~~~a~~(x) a
3
~~ 

+ 
~~ 

b~(x) + c(x) u = g(x , U), x ~

(0. 1)• L u ( x ) = 0 , X E  ac2

where c2 is a bounded domain in IRn
, ac2 is the boundary of ~2, the

• coefficient s of L are real , c > 0 and ~ a~ (x) ~~~~~~~~. > 0 for X E  ~� and
i, J = l

E IR \ {o} . The principl e feature of interest here Is that we assume

g is singular in the sense that g(x , r) is only defined for r > 0 and

g(x , r) -~~ +00 as r - 0+ uniformly for x E ~2 . Obviously (0. 1) cannot

then have a solution u e C2 (cZ ) and , in the cases we discuss , there

may be no solutions of class C1(?~) or w~’ 
2

(e) . However , under

appropriate assumptions, we will obtain a classical solution of (0. 1)

I. e. a solution u E C1(c2) fl C(~2) with U > 0 in ~2 .  In particular,

if g,L, 8ç2 are sufficiently smooth and g(x , r) is

bounded from above uniformly for x e c2 and r >  1, then (0.1) has a

classical solution (Corollary 1. 10). If the coefficients of L and g are

merely continuou s, solutions of (0 .1) stIll exist in a generalized sense

made precise later (Theorem 1. 21).

Sponsored in part by the United State s Army under Contract No. DAAGZ9-
75- C-0024 , by the Office of Naval Research under Contract No. N000l4 -

76-C-0300 and the National Scienc e Foundation under Grant MCS76-

10227.
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A second object of study here is the behaviour of solutions of

• (0 . 1) near 8~� when g is singular. As a consequence of this study ,

stronger global (I. e. in ~2 )  regularity properties than continuity of

solutions are obtained. For example , if g(x, r) = r a
, a > 1, then we

show solutions u of (0 . 1) lie in the H6lder class c2 ’
~~’~ (

The existence of solutions of (0. 1) is discussed in Section 1.

The special case in which the map r —
~~ g(x , r) is nonincreasing admits

an especially simple solution and Is studied first. Then more general

cases are treated by means of the nonlinear elgenvalue problem

( 0. 2) Lu = Xg(x , U), x E Q; U = 0, X E

The boundary behaviour and regularity are discussed in Section 2. First

the rate at which u(x) — 0 when x -~~ 8i~ is determined. This is used

to study the behaviour of ~gradu(x) I as x — ~~~ Lastly as a con-

• sequence of these results , we obtain an estimate for the modulus of

Continuity of u in ç~

There seems to have been little work done on singular problems

such as (0. 1) in the literature. After our main results were obtained

we learned of the work of Fulks and Maybee [5] and of Stu art [10]. In

[ 5 ], the authors treat the existence question for the equation

(0. 3) u~ - ~~ u = g(x , t , u), x e c~ c lR’~, t > 0

coupled with initial and boundary conditions for a class of functions g

which are nonincreasing In u . Assuming that g(x , t , r) — g(x , r) as t-.~~ they

Iii ~~ —~~~~~~~-~~~~~ •“ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• also obtain classical solutions of the corresponding elliptic boundary

value problem upon letting ~ — ~0 . Their proofs involve, in part , an

• interesting argument reminiscent of the Schwarz alternating procedure

for Laplace ’ s equation. In ~o] Stuart studies the existence of classical

solutions to (0.. 1) under hypotheses related to those of Corollary 1. 10

below. Stuart’ s attack is based on finding sub- and supersolutions for

approximate problems together with appropriate a priori estimates.

Singular problems somewhat related to (0 .1) have also been

treated in the context of integral equations. Nowosad [7] studied ex-

istence of solutions of the equation

1
(0. 4) u(x) f  K(x ,y )  ( u(y )) 1 dy

0
1

• where K is a positive semidefinite kernel satisfying f  K(x , y)dy ~
> ~ > 0

0
This work was generalized by Karlin and Nirenberg [6] who treated

1
(0. 5) u(x) = f  K (x,y)(u(y))~~ dy

0

where a > 0 , K > 0 , K is continuous and K(x , x ) > 0  for X E  [0 , 1] .

These authors also obtained some results concerning the nonlinear
S

elgenvalue problem

1
(0. 6) Xu(x) f  K(x , y) p(y , u (y))dY

0

Another abstract result In the same direction was given by Ramaiho [9].

More recently Stuart [11 1 studied existence for

-3-



(0.7) u(x) = g(x) + f  K(x,y) f(y,u(y))dy

where singular functions were permitted.

The result s of [6], [7 ], [8], [10] have the common feature that

although the nonlinearity treated is singular at u = 0, the solu tion

obtained is strictly positive in the (closed) domain of definition.

Therefore the singularity plays a minor role In comparison with the re-

sults of [51, [9] and the current work.

The authors are indebted to Louis Nirenberg for a suggestion which

led us to Theorem 2. 5.

Section 1.

In this section the existence of classical solutions of (0. 1) will

• be established when ~ 7, g and the coefficient s of L are sufficiently

smooth. Then the existence of generalized solutions of (0. 1) when

g and the coeff ic ients of L are merel y con tinuous will be proved. For

simplicity, we take “sufficiently smooth” to mean that the coefficients

of L are in C1(c2) , a~2 is of class C3 and g e C1(~2 X (0 , 00)) . This

allows use of the Schauder theory with any exponent a E (0, 1) in the

course of discussion. (Alternatively, a E (0, 1) coul d be f ixed and

corresponding modifications made in the assumptions arid proofs below. )

Sufficient smoothness is assumed through equation (1. 19) below. Con-

cerning g we will further assume

(g ) Jim g(x, r) = 00 uniformly for x ~ .1 
r-’O+

-4-
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We begin with the important special case in which also

(g2) 
g(x, r) is nonincreasing in r E (0, 00) for x E ~2

The solvability of (0. 1) under (g
1)-

(g2) is covered by the results of

[5] (when L = -A ) and [10]. However, a simpler and more direct

proof is presen ted here .

Theorem 1.1. If g satisfie s (g 1)-(g 2 ) then (0 .1)  possesses a unique

classical solution u E C2 (c~) fl C(~l )  with u > 0 in c� .

Proof of Theorem 1. 1. The existence will be established by solving

the approximate problems

ILu g(x,c+u ) In ~
(1.2) C

u 0 on ~~

• for ~ > 0 and then showing the convergence of u as ~ — 0+ to a
C

solu tion u . The next two lemmas provide the basic information needed

to carry out this process. In what follows ~~ 
a(ç2 ) denotes the set

of j-times continuously differentiable functions on ~l whose der iva tives

of order j are H6lder continuous with exponent a and C
0
~ 
a
(~ ) =

Lemma 1. 3. Let (g
1
) and (g2) hold and > 0 be such that g(x, c) > 0

for X E ~~~� and O < c < c~~ . If O < ~~~<~~0, then

(I) (1. 2) has a unique nonnegative classical solution u

(ii) U E C2, 
a
(ç2) for any cz E (0, 1) ,

-
~~~~

-

— — ~~~~~~~~~ ~~~~~~-~~-•‘. ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,—~~—- ---—-•-••.- ~ ‘-•- • • ••• •• •~•— •- ‘ -‘-—..— -• 
~
— • —- • - • -  —-

~~ 
—•-.•

~~ 
•-- • •

~~
-‘— ——-—- •.• • •• - ,••,--- ‘•-‘ ••



• • —• —• •• .•-••—~~~ • • •~~~ ••—• • 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ —

(iii) U (x) > 0 for x e ~2 and

(1. 4) U >u , C + u  < 6+ u  for O< e < ~ < C
C 6 6 —

Proof of Lemma 1. 3. The existence of u will follow once we exhibit

an ordered pair of sub- and supersolutions of (1. 2) (see, e. g., [2]).

Since 0 < c < C
~~

, LO = 0 < g(x, C) = g(x, C+O) and therefore 0 is a

subsolution of (1. 2). Next define w e C2 ’ 
a
(~2) by Lw = g(x , c) in ~2

and w = 0 on 8~z .  The Schauder theory for linear elliptic equations

([1]) assures the existence and uniqueness of w . By the maximum

principle w >  0 in c2 so, by (g2), 
Lw = g(x, C) > g(x , C+ w) in ~l.

Thus w is a supersolution of (1. 2) and [0, w] is the desired ordered

pair. Since 
~
J- g(x , c+r) Is bounded for 0 < r < w(x), x E

theorem of Arnann [2] implies that (1 . 2) has a solution u E C2
’ a(~ )

with 0 <u <w in ~2. The uniqueness of u follows once we
C

establish (1. 4) for arbitrary solutions u , u6 of the C and 6 problems.

• Let 0 < ~ < 6 < €~~, and U , u5 
be such solutions. If is either

- u 6 or (6 +u 6) - (c + U )  then > 0 on 8c2 and, since g is

nonincreasing, L~ > 0 on A = {x E ~2 I G(x) < 0 )  . The maximum principle
S A —

therefore asserts that u attains its minimum over A on 8A. But

u = 0 on ~A .  Since <0 on A, A must be empty. Thus U > 0

and (1.4) is established.

The next lemma, which follows from [3, Thm.4 of Chapter 5] and

the Sobolev embedding theorem, will also be used In later proofs.

k q
W ‘ (~2) denotes the usual Sobolev space in what follows.

-6-
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Lemma 1. 5. Let 
~~~~~~
, ~ be bounded open domains in 1R~ with C ~

Suppose ~ is a second order uniformly elliptic operator with coefficient s

continuous in & and q > n . Then there is a constant K such that

(1. 6) lIwil < K ()j~~wI) + ~wI!

for all w e W2’ 
q (~~) The constant K depend s on n, q, the diameter

of ~~~, the distance from to a~ , the ellipticity constant of s~ ,

and bound s for the coefficients of ç~ (In L 30
(~~)) and the moduli of

• continuity of the coefficients.

Completion of proof of Theorem 1. 1. From (1. 4) , 0 < U  - u < 6-c for

0 < c < 6 < e0 . Therefore u r n  u = u exists uniformly in ~2 where

u > 0  in ~ and u = 0  on ~~~~~~~~ It rernains to see that u e C ( ~2) and

Lu g(x , U) in ~2 . Clearly u > u for ~ E (0 , c~ ] by ( 1. 4) , so u > 0

in ~7 and g(x, c + u )  —
~~ g(x , U) uniformly on compact subsets of ~2

Choose open subsets 
~~~~~
, £~ of ~T2 so that C 

~~ 
C~~ 1 C ~ and

q > n . By Lemma 1.5 there is a constant K = K(n , q, 
~~~~~
, ~~~~~~ , 

L) such

that

(1.7) 2 q ~ K( II Lu
~ ll q + f l u  II q

L 
~~~ 

L (&~ )

K( II g( x, c + u  )l I + f lu  II
L ( ~~1)

In conjunction with the remarks above, (1 7) implies that {u I ~ (0, ~0 ])
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• is bounded in W
2
’ °(cl) . Therefore u -~~ u weakly in W2

’ 
q(~ )b c  - b c

Choose a E (0 , 1) and q > n(l - a) ’ 
. It follows from the Sobolev em-

bedding theorems that {u } is compact in C~’’~ (~2) and g(x , ~+ u )

— g(x , u) in C1(c~) . Thu s we have u E W~’1~(~2) and Lu g(x , u) E

C1(c~) . The ~~ regularity theory for L [1] now impl ie s u E

• and hence u E C 2 , a(~~) C C2 (~2)
• b c

Ft remains to prove the uniqueness of u . If u and v are classical

solutions of (0.1) , (g 2 ) implies L(u-v) > 0  on A = {x e c~j u(x) < v(x) }

Since u - v = 0 on 8A it follows that A = $ as in the proof of (1. 4)

and u >  v . By symmetry we also have v > u and the proof is complete.

Remark: Rather than using interior estimates as above we could

have used the Schauder interior estimates. These are more convenient

for making minimal classical regularity assumptions as in [10]. However ,

we will employ ~~ estimates several times below.

• We turn now to the more complex case in which g(x , r) is not

monotone in r . The existence theorem for this case will be obtained

as a consequence of result s concerning the more genera l nonlinear

eigenvalue problem

Lu= Xg(x,u) X E  ~2
(1.8)

~~ u = 0  X E a c 2 .

By a (classical) solution of (1. 8) we mean a pair (X , u) E (0, ~o) X

(C 2(c�) fl C0(~ )) with u > 0 in ç2 which satisfie s (1. 8). Here and

below

fr -8-
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0(cl) = {u E C(12)I u 0 on

Theorem 1. 9. Let g satisfy (g 1) . Then there is a set C of solutions

of (1. 8) satisfying

• (i) t~ is connected in JR * C0(~2) ,

(ii) c is unbounded in JR x C0(i? )

• and

(iii) (0, 0) lies in the closure of ~ In P X C0(~~)

Theorem 1. 9 will be used to prove:

Corollary 1. 10. Let g satisfy (g 1) and

There is a constant A such that
(g 3)

~ 
g(x,r )<A for r > l  and xE~~7

• Let C be as in Theorem 1.9. Then {x l (X , u) E 
~ 

} = (0,0 0)  . In particular,

(0 .1) has a solution.

Proof of Theorem 1. 9. As in the proof of Theorem 1. 1 we begin by intro-

ducing the approximate prr ’blems:

(1.11) Lu Xg(x, c+u) in ~l, u = 0 on 8~2

where c > 0 . Solutions (X, u) of (1. 11) have the obvious meaning. Let

u denote the inward normal derivative of u on 8~ and define
V

P = {u e C1’ a(c�) I u > 0 in 12, u = 0 on 812 and u >  0 on ai-z )

• where a (0 , 1 ) .  Let 0 <  c < c0 
imply g(x,c) >0 in 12. It follows

~~~~~~~~~~~~~~~
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solutions of (1. 11) which is a connected and unbounded subset of

(P~ x P) U ~(0 , 0) ) (in the topology of P X ~~~~‘ 
a(~~ )) and co n ta ins

(0 , 0) . It is easy to see that the topology induced by JR X C o ( 12) on

-

• 
the set of nonnegative solutions of (1. 11) coincides with that induced by

JR )< C~’ a(12 ) Hence v~ is connected and unbounded in JR x

The existence of the desired set C will be obtained by studying

as ~ 
-

~ 0+ . Let ~ be a bounded open neighborhood of (0 , 0) in

JR x C
o
(121 . The next step in the proof is to find a solution (X , u) e

• of (1 . 8). By the propert ies of c there is a solution () ~~, u )  e ~~ 11

( (0 ,~r) XP) of (1.11) for 0< e < c0 
. We will show th at i f

and \ — X, then X > 0, a subseq uence of {u } converges to a
e m C m

function u E 02 (12) (1 C~ (12 1 and ( X , u) has the desired propert ies. To

do this requi res upper and lower bound s for u and these are given by
C

the next lemma.

‘F Let q~ 
E C~

, a(~2) be defi ned by

• 
(1.12) Lq~~~l on l2 ; q~~~ O on a12

Lemma 1.13. Let M >  0 a’id (X , u )  E (0 , 00) x P be a solution of

• ( 1. 11) sat isfying ~ < M  and u < M  in 1 2 .  There l s a n u m b e r  c > 0

a rid a pair of functions y (M) > 0, K ( ~ , M) > 0 such that if co is given

by (1. 12) and 0 < e < c then

( 1. 14) X ~j ( M) q,(x) < u ( x )  < ~ + 
~ 

K ( p ,  M) q,(x) , x e 12

• 
for ~3 €  (0 , M] .

-10-
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We first use Lemma 1. 13 to complete the proof of Theorem 1. 9

and then prove the lemma. Since t~ is bounded, there is an M > 0

such that (X, u) E ~ implies X, u < M . Let (X , u )  E 8G fl (0, 00) X P

be solutions of (1. 11) as above ~ 
-

~~ 0+ and X — X . If X = U we
• ‘ m Cm

deduce from (1. 14) that

0 < lIm sup u (x) < p for ~ E (0 , M]
m~~ QO m

and hence that u - ~ 0 in Co(12) . Thus (X ,u )  ~~(0,0) in JR X C 0(lfl

Since (X , u ) lies in the boundary of the open neighborhood ~ ofCm C

(0 , 0) thIs is impossible. Therefore X > 0

From (1. 14) and X > 0 we see that u is bounded from below
C m

by a function which is positive in 12 and from above by a constant.

Arguing as in the proof of Theorem 1. 1 we deduce that {u } is bounded

2 
C m

in W 
,q

(12) for q > n and can there fore assume {u ) converges
b c

weakly in W~ ’ ’~(12) and strongly in C~’ ’~(12) if q > n /(l-a) to a function

U E C~~~ (12), such that Lu = X g ( x, u) In 12 . Passing to the limit In

(1. 14) we find

(1. 15) X y(M) -p(x) < u(x) < ~3 + X 1< (~ , M) p(x) , X E 12 ,

4

for ~ E (0 , lvi] . Thus u r n  sup u(x) < p for each such ~3 and this im-
• x— 812

plies lim u(x) 0 . Hence u e C0(12 ) . In a similar way we see that
x— 812

u (x) — 0 as x -. 812 uniformly in m . From this and u -~~ u In
C 

~m
• 0(12) it follow s that (X , u ) -, (X , u) in JR X C 0(12 ) and hence

( X , u ) E  8~ . 
~m ~m

-11-
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At this point we have shown that if ~ is a bounded neighborhood

of (0,0) in JR x C0(fz) then there is a solution (X , U) E 8~ of (1. 8)

which moreover satisfies (1. 15). Let 
~ denote the set of solutions of

(1. 11) which satisfy (1.15) with M = max{X, ll u If C(j~)
} (as do the ones

we have obtained). Since .~ fl 8~ � 0 for ~ as above, if closed and

bounded (in JR XC
0(12)) subsets of 3 are compact the existence of

C C 3 possessing the desired properties follows from a standard argument

of point set topology [12]. Let {( X~~ u ) }  be a bounded sequence in

Without loss of generality we can assume X -
~~ X > 0 . If

X 0, U
rn 

-
~~ 0 via (1. 15). If X > 0, one shows as above that a sub-

sequence of { u }  converges in 02 (12) P C0(1�) to a function u such

that (k , u) E ~ . Thus to complete the proof of Theorem 1. 9 it remains -

to prove Lemma 1. 13.

Proof of Lemma 1. 13. Set

(1. 16) K(~~, M) = max{g(x,r)f x e 12 , ~~< r < 1  + M }

Let (X , U )  be as In the lemma , 0 < c < 1 and ~ e (0 , M] . Set

= {x e 121 u (x) > p} . Then , using (1. 12), (1. 16),

IL(~ + X K(p , M)~~ - U )  = c~ + X (K(p , M) - g(x , e+u ) ) > 0 , X E  A~

~ + 
~~ 

K(~ , M) ç - U = X K(p , M)~ > 0, X E 8A~ .

Thus u < 1~ + X 1~(p, M)q~ on A~ by the maximu m principle and the

right-hand Inequality of (1. 13) Is established.

-12..
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To obtain the lef t-hand inequality , choose R >  0 so that g(x , r) > 1

If 0< r < R, which is possible by (g 1) . Define y =  min (l, R/2 M ff 4~ll C(~ ))
Then for C E [0 , R/Z], y E (0 , ~y ]  and X E (0 , M]

(1. 17) L X y p  < Xg(x , c + X yp) in 12 -

From this we will deduce that X V . ~p . Indeed , define by

U - y X~~ E P  for 0 <  y < ~j  and u 
•••••• 

X y ~ P .  It suffices to

show ~ > y . If ‘y < ~~, w = U - y X~~ > 0 in 12 and , by (1. 17),

for 0>0

(1. 18) Lw + Ow > Cw + X [g(x, c+U ) - g(x , C +

But g(x , ~ + u )  - g(x , c + ~ X q~) > C0 w where C~ is a lower bound

on ~~~~~
- (x , r) for e < r  < e + fl u 11 c(~ ) + ~~ ~* lIq,ll 0(~ ) . Choosing C

so that C + X C 0 > 0, Lw + Ow > 0 by (1. 18) and w e  P by the maximum

• principle. This contradicts the definition of y and so y > y .

Hence i~ above, ~ ‘ = min(1, R /2 M ll c~ll C (j ~) ), e = R/z have the desired

properties and the proof is complete.

• 
Proof of Corollary 1. 10. By the assumptions of the Corollary, (1. 15) and

(1. 16), ( X, u) E C implies (choosing ~3 = 1)

(1. 19) u(x) < 1 + ~Aq,( x), X E 12

Since C is connected and (0 , 0) E ~~ the projection (X , u) E C —

• of C into JR has as its range an interval (0, A) or (0,A ] . If A < 0 0

(1. 19) implies that C Is bounded in JR X C
0
(12) . Since C is unbounded ,

-13— 
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A = 00 and the proof is complete.

We conclude this section with an extension of Theorem 1. 9 to

the case In which the coefficients of L and g are merely continuous.

More precisely, we assume that

L r L is uniformly elliptic with continuous coefficientsP 
~~in 12 and c ( x ) > O in 12 ,

and, in addition to (g
1) ,

(g
4) ge C(Q X(0,00)).

One cannot expect classical solutions of

(1.20) Lu = Xg(x, u) in 12, u = 0 on 812

in this case. We say (X, u) is a generalized solution of (1. 20) provided

• that there is a q > n for which (X, u) E (0 , oc~ fl (C
o(12) fl W~ ’

’
~ (12) and

(1. 20) is satisfied a. e.

Theorem 1. 21. Let (L), (g
1) and (g4) be satisfied. Then (1. 20) has a

set c of solutions satisfying the assertions of Theorem 1. 9.

• Proof of Theorem 1. 21. The proof is similar to that of Theorem 1. 9 so the

exposition will be abbreviated. For approximate problems we consider

(1. 22) LmU =  X~~~(x, u ) i n 12, u = 0  on 812I 1 -

where

n 2 n
Lm - 

~~~~~~ 

a
1~~~(x) 

8x~~~~ 
+ 

~~~~ 

b1 (X) 
~~~~~~~ 

+ c (x)

-14-
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is a sequence of elliptic operators with cm 
> 0 whose coefficients are

smooth and converge as m -‘ ~ to the coefficients of L uniformly in

12 . The functions are chosen to be smooth in 12 x [0 , 00) ,  to satisfy

g (x, r) > 1 for 0 < r < P for some P independent of m and g -* g

uniformly on compact subsets of 17 X (0,00) as m — 00~~ (For example ,

let be a smooth approximation in the maximum norm of g(x , + r )

on 12 X{0,m].)

The program now runs much as before. Let G be as in the proo f

of Theorem 1. 9. As earlier, there is a solution (X , Urn) C 8~ P ((0 , cC ) X P)

of (1. 22). To obtain a solution of (1. 20) In 8t~ from 
~
‘m’ 

Urn) as

m — 00 requires a version of (1. 15). From the proof of (1. 15) we have

(1. 23) >‘rn ~~~~~ ~~~~~~ 
U (X) < p + X~~~~ (~3 , M) 

~~~~~ 
in 12

provided 
~
‘m’ 

U rn < M and ~3 E (0, M ] where

[Km~~~
M) max{~~ (x ,r): XE ~ p < r < 1  + M}

(1.24)

LL ~ = 1  1n 12, q’ = 0  on 817 .m m  m

and g ( x , r) > 1 if 0 < r < P . By the results of Bony [4] L: W~ ’ q(12) -~

is an isomorphism for q > n . Let ~ (X, Y) be the space of bounded

2 q  qlinear operators from X to Y .  Since L
m 

— L in &(W0
’ (12), L (12))

as m — ~~~,

L~~ —‘- L
1 in ~ (~~(12), ~~~~~(12))

and a fortiori L~~ — L~~ in ~~~ (17), C0(12 )) If q > n . In particular ,

-15- 
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-, q’ In C0(12 ) where q is the unique solution of Lq’ = 1 in

W~ ’ 
q

(~ ) Let y ,  ~ be the limits as m -~ 00 of 
~~ 

‘
~m 

defined in (1. 24).

Note also that Bony’s results imply q’ > 0 in 12 .

It is now a simple matter to complete the proo f as before. Choosing

appropriate subsequences if necessary X — X > 0, U
rn U in

(12) (1 C
0

(IT�), and (X , u) E 8~ Is a solution of (1. 20). Moreover,

(1.23) Xy(M) q’(x)< u(x)< p + XK(~ , M) q,(x)

for ~ E (0 , M], X, u < M . It then suffices to show any closed bounded

subset of generalized solutions of (1. 20) satisfying (1. 23) is compact in

• (0,00) X C~ ( 12) U {o , o} . But this follows as before as well , and the

proof is complete.

Remark 1. 25. Corollary (1. 10) remains true If C Is the set obtained in

Theorem 1. 21.

Remark 1. 26 . It is clear that the existence assertion of Theorem 1. 1

follows from Corollary 1. 10 and that Theorem 1. 9 may be deduced from

Theorem 1. 21 and standard regularity theorems. However our presentation

was organized so as to minimize duplication of arguments and, hopefully,

to minimize the readers di scomfort.

Section 2. Boundary Behaviour and Regularity. -:

This section is devoted to the study of the behaviour of solutions of

(0.1) near the boundary. In particular, If g Is Independent of x and

satisfies (g
2

) the precise rate at which u(x) —
~~ 0 as x -~ 812 is

-16-
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determined and an estimate for I grad u(x)J near 812 is obtained. This

information is then used to obtain a modulus of continuity (sometimes

precise) for u in £7

We assume below that g is independent of x and that (g
1)

holds. The estimates for u and Igrad u f will be in terms of a solution

of the one-dimensional problem -p” g(p) . To be precise, let a >  0

arid p € C2((o, a]) P C([0, a]) satisfy

(I) -p ”(s) = g(p(s))  for 0 < s < a

(2.1) (Ii) p(0) 0 ,

-• 

p(s) > 0 and g(p(s)) > 0 for 0 < s < a

Our main estimates for u and i grad u 1 are

Theorem 2. 2. Let g g(r) be continuous and satisfy (g
1
), (g2) . Let

L satisfy (L), and u e C~~(12) P ~~~~~ (17) be a solution of (0 , 1) where 
- J

q > n . If p satisfies (2. 1), then there are const ants X,A > 0 such

that H

(2. 3) Xp(d(x)) < u(x) < A  p( d(x)) on £7 = {x € 17 f d(x) < a)

where

(2 .4 )  d(x) = distance (x, 812) .

Theorem 2. 5. Under the hypotheses of Theorem 2. 2 there are cons tants

M, m, a > 0 such that

L 
• 

(2 .6)  Igrad u(x) f < M{d (x) g(mp(d(x)) +

o n17 . 
-
•a

H -17-
.r; f
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As an illustration of these results , consider the special case

g(r) = r~~ . Trying for a solution of -p ” = ~~
a of the form p(s) = bs~

lead s to the equations ..bp(p..1) = b~~ and p-Z = -a~ . If a > I, then

= 2(l+a)~~ and the equation for b has a unique solution. Thus

Theorem 2 . 2 implIes that u(x) is bounded from above and from below

by a multiple of d(x) 2/( l+a) Theorem 2. 5 further tells us that

( 1 -a)/(l+a)grad u(x) Is bounded above by a multiple of d(x) . Together

these estimates Imply that for y> 0

)grad(u(x)~)I< y lu ( x) l~~ I grad u(x)I < l (~ d(x)1’

where ~ = [Z(’y- l) + (l-a)]/( 1+a) . Choosing y = (l+a)/2 we have ~ = 0

and ~~~~~~~~~~~~~~~~ is bounded. Thus u(X)~~~~~/2 is Lipschitz

• continuou s on 12 . Since v(x) G is Holder continuou s with exponent

¶ 
~ whenever ~ € (0, 1) and v(x) is Lipschitz continuou s, u( x) =

( 1+a)/2 2/( 1+ar) .. . —• (u(x) ) is Holder continuous with exponent 2/(1+a) in 12

It is interesting that this is precisely the modulus of continuity of

solutions of (2 . 1).

These remarks show how Theorems 2.2 and 2. 5 can be employed

to obtain a modulus of continu ity for u . Namely, if we can find a

monotone function f so that grad f(u) = f’(u) grad u is bounded , then
• — lf(u) is Lipschitz continuou s and the continuity of u = f (f(u)) is

essen tially that of f~
1 
.

Our program in the remainder of this section is as follows: First

a detailed study of the problem -p ’ = g(p) , p(0) = 0 is made. This will

_ _ 
-~~~~~~~-~~~~~~~~~
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clarify the freedom of choice of p in Theorems 2. 2 and 2. 5 and provide

other Information used later as well. Then Theorems 2. 2 and 2. 5 are

proved. Next we remark on the case in which g depends on x and is

not monotone. Lastly, a further study is made of the modulus of con-

tinuity of u by the method described above.

Lemma 2.7. Let g: (0, 00) — JR be continuou s and g(r) — +00 as r— 0+
Assume g(r) > 0 for 0 < r < b and set

b
(2. 8) F(s) = f g( -r)di- for S > 0

and

(2. 9) h ( s )  
~ 

1 
dT for 0 < s < b

0 ~J2 F(-r )

If p satIsfies (2.1), then

I li m h 4(s)

s-’O+ p(s)

exists and is positive. If F(0+) ~~~ then I = 1

Proof of Lemma 2 .7 .  From -p ” = g(p) we deduce that - •

- 1

( 2.10) p’(s) 2 
= ZF( p(s)) + C

for some constant C . Since -p ” g(p) > 0, p is concave near s = 0 •

and , although possibly infinite, p ’(O+) exists. Moreover , p( 5)  > 0

for 0 < s < a and therefore p ’(O+ ) > 0 . Thus 0 < p ’(O+ ) <~~ and

p ’(s) > 0 near s = 0 . Now (2.10) implies s H(p(s)) for small s

where
-19-
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H(s) 
~ 2F(T)+~ 

dT

Therefore p(s) = H~~(s) . (If C 0, h as given by (2. 9) coincides

—1with H . Moreover , h has the propertie s required of p .) It is

clear from (2. 10) that p ’(O+) <~~ If and only If F(0-f ) <~~ . Hence

when F(0+) <~~ l’Hospital ’s rule implies

— 1 
__________

0 < t im h (s) 
= ~sj2 F(0+ )  = j  < 00

s— O+ p( s) 
~J2F( 0+) +C

If F(0+) oo , the definitions of h , H imply that for ~ C (0 , 1) there

F is an r > 0 for which

(2.11) 

C 

(l-c) h(r ) < H(r) < (l+C ) h(r) , 0 < r < r .

Choose r p(s) in (2 . 11) and recall that p = H 1 to deduce that

(2. 12) h~~( 1
S 

) < p(s) < h l( 1
S 

) if 0 < p(s) < r  .

Since h 1 is concave near 0 and h~~(0) = 0, h 4(as) > ah 1(s) and

h ’( s ) = h 1( L Vs) > L h ’(Vs) for a e  [0, 1], y > 1  and s, y s  > 0

sufficiently small. Thus (2 . 12) implies that

~: 
(2.13) ~+

1 h 4(s) < p(s) < 1
1 h ’(s) 

•

for s near 0 . Since C c (0 , 1) is arbitrary, (2. 13) implies I = 1 in 
•

this case.

Proof of Theorem 2. 2. Since u(x) and p(d(x)) are positive on 12

-20-
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it suffices to show that we can find X,A , 0 < a ’ < a for which (2. 3)

holds on 12 . Then (2. 3) will hold on 12 with some other choice of
• a’ a

X,A

Set

= L - C = ~ a.~(x) 8x 8x. + b.(x)
i,J=1 1 J i=1 I

• 2 qarid define ço ~ W 0’ (17) (see [4]) by L~ = 1 . By the maximu m principle

of Bony ([4]) cp > 0 in 12 and, as a simple comparison argument shows

the int erior normal derivative of ç on 817 Is positive. Thus q~(x ) is

bounded above and below on 12 by positive multiples of d(x) . It Is

therefore enough to show that u may be bounded above and below near

81-2 by positive multiples of p( ç) since

(2.14) np(s) < p(~ s), p(ys) < Vp(s) for 0 < p < 1, y > 1 and 0 < ~s < a

The inequalities (2. 14) follow from the concavity of p as in the proof of

Lemma 2 .7.

Let 
~ r = {x e 12 3 q,(x) < r} where r > 0 is so small that C 17 - -

and p’(s) > 0 for 0 < s < r .  Next observe that if v C W
2
~ 

~~(~~~~)

Lv > g(v) in 
~ r and ~~> u on 8

~~r then v > u in ~ by the maximum

• principle of Bony (see the uniqueness proof of Theorem 1. 1). Similarly,

if Lv < g(v) and v < u on 
~~ r’ 

then v < u in &

We will show that we may choose v = Ap(~), V = Xp(ç t ’) if A is

sufficiently large and 0 < x is sufficiently small. By direct computation

-21-.

—‘--•- —-— • - -~ -•~~~- • - -  • •--~~ -•--—- - —- ------ .- ~~----•-~~---~ - -------- — - — - — - . —• —•- -. •- - -  —- - - - • -



— 

~~~~~~~~~~~~~~~~~~ “~~~~~~~~~~~
— --———-—- --—------~- -~~~ .———- ----- -U——— ~~~~~~~~~~~

n
(2. 15) Lp(~~) = p ’(q ~) L q ’  + cp( q)  - p” ( 9~) ~ a1~(x) 

~~i,j = 1  I J

= p ’(q ~) + cp(q,) + g(p( q~)) ~ a1~(x) 
~~i,j = l  i J

Observe first that for r suff iciently small there is a 6 > 0 such that

I grad q~(x)I > 5 for x € 
~ r Since p ’(ço) > 0  in and c >0, to

prove

LAp( ç~) > g(A p(p)) in

It suffices to choose A so that

n
(2. 16) Ag(p( cp )) ~ a1~(x) 

~~ 
> g ( A p (~,)) in ~i, J= l i J

By the uniform ellipticity of L, there is a ~ > 0 such that

n 
2

~ a.~ (x) 
~ I grad ~p Ii,J=1 i j

on 12 . Using the monotonicity of g, (2. 16) holds provided that

A 52 ~ > 1 and A > 1 . Finally, Ap( 
~~

) > u ~n 8
~ r also hold s when

A is large enough. Thus then we have established an upper bound of

the form (2.4) .

To show that Xp(c~) has the desired properties, observe first that

by (2. 15) and (g 1) we have

(2. 17) L(Xp(ç o)) ~ g(Xp (ço ))  °~ ~ r

for sufficiently small X > 0 provided that , e. g . ,

22



(2.18 ) 2Xp ’(~ ) < g (Xp (ço))

~~ 
~r By (2. 10), (2 .8)  and the monotonicity of g

p’(q ) < ‘~J 2 ( b -p ( q , ) ) g ( p ( ç , ) ) +~~ < c
1(N~g(p(p))-f 1 < c2~Jg( Xp(~p) )

for X > 0 small enough and some constant s c1, c2 . It is thu s clear

that X can be chosen to satisfy (2 . 18) and also Xp( q~) < u on 812

This completes the proof.

Proof of Theorem 2. 5. We are indebted to L. Nirenberg for the basic Idea of

• the proof. The first step is the following lemma.

Lemma 2. 19. There is a constant K
1 

> 0 such that if r e (0 , 1],

B2 (x 0) {x e 1R~ I I x - x0 I < 2r} C 17 and v E W
2, ~(~ 2 (~ 0)) where

q > n  then

(2 .20)  Igrad v(x) l < K 1(r II Lv lI ~ +~~~i( v ( J  )
L (B 2 (x0)) C(B 2 (x 0))

for x € B ( X 0) . ( l i Lv il ~ 00 is  allowed.)
L (B 2 (x 0))

The lemma is proved after first being used to establish Theorem 2. 5.

Let x E 1 28 and set r = d ( x ) / 3 , v = u  (so Lv = Lu = g(u)) and x = x 0
in (2. 20) . Note that if z € B2 (X 0) then

( 2.21) d(x)/3 < d(z) < 5d(x)/3 .

Thus if A =  { z€  12! d(x) < 3 d ( z ) < 5 d ( x ) ), then

IA
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(2. 22) I grad u(x) I < K
2(d(x) IJg (u)Jl 00 + d(x) Il u ~ 00

L (A) L (A)

where K
2 

= 3K
1 . Now Theorem 2. 2 together with the monotonicity of

g, (2. 14) and (2. 22) yield the assertions of the theorem.

Proof of Lemma 2. 19. Let x
0 

€ 12, and 0 < Zr < d(x
0
) . Changing

variables according to x0 + ry = x, we define

Lrx = 

~ 

a~~(x0+rY) y 8y 
~ 

b1(x
0
+ry)~~~ + c(x

0 + ry)

and V (y) = v(x0 ÷ ry) for J y )  < 2 and v e W2’ ~(~2 (
~
0)) . Then

(L v ) ( y )  = (Lv)(x) for 1y 1 <2rx 0 rx 0

The operators r 2L in { I y I < 2 } have uniformly bounded coefficients ,
0

• a uniform ellipticity constant and the coefficients have a uniform modulus

of continuity for x0 € 12, 0 < Zr < d(x
0) . Thus by the Sobolev embedding

Theorem and Lemma 1. 5

cf ~~~ Vrx (Y) I ~~~~~~~~~~~~~~~~~~~~ + rx q 1 1

for I~ I < I . Estimating the norms by the L
00 

norms and using

v x (y) = r f— v(x) above then supplie s the desired estimate.y1 r 0

Remark 2. 23. If g(x , r) depend s on x and is not monotone in r suppose

• there are continuou s ~~~, 
g such that

(2. 24) g( r) < inf mm g(x , s) and g(r) > sup max g(x , s) .
0 < s< r  xE c2 s>r  XE I2

(If g(x , r) is monotone in r, we can drop the inf and sup and define g, g

by equali ty in (2. 24). For the general case there may not exist such a 

~~~~~~~~~~~~~~~~~~~~~~~
• • •

~~~~~~~
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Then solutions of (0. 1) are bounded above by solutions of Lu = g (u)

U = 0 on 812 and below by solutions of Lu = g(u) ,  u = 0 on 812 . Let

• p , p satisfy (2. 1) with g replaced by g and g respectively. Then

the above arguments establish estimates of the form Xp(d ) < u < Ap(d)

and fgrad U I  < K(d g(Mp (d)) + p(d)/d) in a neighborhood of 812 in 12.

We now return to the question of obtaining an estimate for the

modulus of continuity of u . The case g(r) = r ‘
~ , a > 1 was discussed

earlier. The cases 0 < a < 1 are covered by the next result.

Theorem 2. 2 5. Under the hypotheses of Theorem 2. 2 , the following

are equivalent:

(i) u is Lipschitz Continuous Ifl £7

(ii) F(0÷) < oo where F is given by (2. 8).

Proof of Theorem 2. 25. FIrst recall from the proof of Lemma 2. 7 that

• p ’(O+ ) = ~ if and only if F(0+) 00 . Let v(x) be the inward pointingunit

normal on 817- . By Theorem 2. 2, If x e 812 and t > 0

(2 .26 ) X p(d (x+tv(x))) 
< 
U(X+tv (X)) < 

Ap (d(X +tv( X))) 
.

Since d(x + t v ( x) )  t + 0(t), if u Is Lipschitz continuous (2. 26) implies

that p’(0+) < 00 In fact , if p ’( O+ ) = oo we see from (2.26 ) that

u r n  inf U(x + t v (x) ) / t  = u (x) = 00 at every x 812 . It remains to show
V

that u is LlpschItz continuous when F(0+) <~~~ . By Theorem 2. 5, it

suffices to bound p(s)/s and sg( p(s)) for s near 0 . But p(s)/s —

p ’(O+) < as s -. 0+ , so p(s)/s is bounded. Thu s we need only bound

-25-.
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sg( s). Since F(0+) - F(s) = f g( T)dT > sg(s) by the monotonicity

of g, if F(0+) < 00 then s g ( s )  -~ 0 as s -~ 0+ and the proof is com-

plete.

Next we treat the case g(r) = r4 
.

Theorem 2. 27: If g(r) = r~~ and u and p satisfy (0. 1) and (2. 1)

respectively, then p t (u) is Lipschitz continuou s near 8 12.

Proof of Theorem 2. 27. Using (2. 10) and Theorem 2 . 5 we have

-
• (2.28)  )grad p 1(u) ) = 

1 I g radu l  < — K 
~~~~

~J 2 F(u)+~~ ‘J2 F(u)-i-~ ~

for some constant K .  Next , choosing b = 1

1 1(2. 2 9) F(u) = f  — d-r = -log u > -Iog(A p(d))

by Theorem 2. 2. The term d/p(d) on the right in (2. 28) tends to 0

as d — 0 since p’(O+ ) = oo Thus it remains to show that

p(d)/(d ~i -log (Ap(d))  + ~ ) is bounded as d — 0 and to do this it

suffices to bound p(d)/d ~J -log(p(d)) . Setting s = p(d) , this expression

can be written s/(H(s) ‘J -log s ) where —

S 5 -:
H(s) = f 1 d-r > f 1 dT -=-- 1

• 0 ‘J -2 log T +~~ 
— 

s/Z~ J -2logT+~~ 
2
~ ./ -21og(~.) + ~~

0 Hence s/(H(s) ~j  -logs ) is bounded as s — 0+ and the proof is complete.

More generally, if g is indepe ndent of x and nonincreasing , we - •

seek an increasing convex function f > 0 with f(0) = 0 such that f(u)

is Lipschitz continuous near 81-2 . By Theorems 2. 2 and 2. 5,

-26-
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Ig rad f(u) )  = I f ’(u ) g r a d u l < K f ’ ( A p ( d ) )  [dg(Mp(d) ) + ,

or, with p = h~~, h given by (2. 9), s = Ap(d) , d h(s/A)

(2. 30) I g rad f(u) i < K f ’(s)  (h(~~~)g (
~~~~ 

s) 4- )
h( X )

It therefore suffices to bound the right hand side of (2. 28) by a constan t.

If we choose f ’(s) = h(s/A)/g(Ms/A), then we can clearly bound (2. 28)

and f’(s) is increasing as desired . This choice is quite crude and can
-a (3a +1)/2be improved. For example, if g(r) = r , a > 1, f(s) — s and

we would only conclude u € C2
~~ 3~~~~(~~) . We do not know an optimal

continuity result for the general case. Perhaps Theorem 2. 5 is itself

too crud e for this purpose.

d

• 13
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